Bis(2-bromoethyl)selenium dibromide as the selenium-introducing reagent: One-pot preparation of 2,5-bis(alkoxymethyl) tetrahydroselenophenes by the cyclization of 1,5 -hexadiene

Yoshinori Takanohashi, Narumi Tabata, Tomoaki Tanase and Sadatoshi Akabori
Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274 (Japan)

(Received July 31, 1992; in revised form October 23, 1992)

Abstract

The reaction of bis(2-bromoethyl)selenium dibromide (1a) with 1,5-hexadiene (2) in methanol or ethanol affords 2,5 -bis(al-koxymethyl)tetrahydroselenophene-1,1-dibromides ($\mathrm{R}=\mathrm{CH}_{3}$ (3b), $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$ (3c)) via 2,5-bis(bromomethyl)tetrahydro-selenophene-1,1-dibromide (3a). The reaction of 1 a with 2 in 1-propanol, 2-methyl-1-propanol or 1 -butanol in the presence of sodium carbonate gave 2,5-bis(alkoxymethyl)tetrahydroselenophene ($\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}$ (4a), $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}$ (4b) and $\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}$ (4c)) via 3a. The ratios of the trans and cis isomers of 3a-3c are 3:2. In addition, the structure of trans-2,5-bis(methoxymethyl)tetrahy-droselenophene-1,1-dibromide (trans-3b) was determined by X-ray crystallography.

1. Introduction

Organo and inorgano selenium compounds have been used as reagents for introducing selenium as well as various functional groups into unsaturated substrates [1,2]. Nicolaou et al. [3,4] have shown that N -phenylselenophthalimide is a useful and effective reagent for organoselenium-induced cyclization in organic synthesis. One of the methods for the synthesis of heterocyclic compounds containing a selenium atom is the cyclization of alkadiene and selenium tetrabromide [5]. In this reaction, the carbon-selenium-carbon ($\mathrm{C}-\mathrm{Se}-\mathrm{C}$) bond is formed by the cyclization of alkadiene and selenium tetrabromide. However, there has been no report on cycloaddition by the formation of the $\mathrm{C}-\mathrm{Se}-\mathrm{C}$ bond with cleavage of the $\mathrm{C}-\mathrm{Se}$ bond of the reagent introducing the organoselenium. Recently, we reported a convenient one-pot procedure for the synthesis of symmetric tricalcogena[3]metallocenophanes using 1a to insert selenium [6]. In previous papers, we described a new procedure for the highly

[^0]selective reduction of tertiary amide among tertiary, secondary and primary amides to the corresponding amine using dialkylselenium dibromide- NaBH_{4} in THF [7-9]. In connection with these studies, we report here a convenient one-pot preparation of 2,5 -bis(alkoxymethyl)tetrahydroselenophenes by a cyclo-addition of 1,5-hexadiene (2) to 1a.

2. Results and discussion

The reaction of reagent $\mathbf{1 a}$ with $\mathbf{2}$ in acetic acid at $20^{\circ} \mathrm{C}$ gave 2,5-bis(bromomethyl)tetrahydroseleno-phene-1,1-dibromide 3a in 89% yield together with ethene (entry 1). Similar reactions were carried out in various solvents. These results are summarized in Table 1. Although 1a reacted easily with 2 in methanol and

TABLE 1. The preparation of 2,5-disubstituted tetrahydroselenophenes by the reaction of 1 with 2 at $20^{\circ} \mathrm{C}$

Entry	Reagent	Solvent	Reaction time (h)	Product	Melting point (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Yield }^{\mathrm{a}} \\ & (\%) \end{aligned}$
1	1a	AcOH	4	trans-3a	154-155	53
				cis-3a	159-160	36
2	1a	MeOH	8	trans-3b	138-139	$45^{\text {b }}$
				cis-3b	140-141	$31{ }^{\text {b }}$
3	1a	EtOH	8	trans-3c	114-115	$29^{\text {b }}$
				cis-3c	120-121	$19^{\text {b }}$
4	1a	PrOH	14	trans-3a		48
				cis-3a		32
5	1a	$(\mathrm{Me})_{2} \mathrm{CHCH}_{2} \mathrm{OH}$	14	trans-3a		39
				cis-3a		26
6	1a	BuOH	14	trans-3a		32
				cis-3a		22
7	1a	MeOH ${ }^{\text {c }}$	2	trans-3a		26
				cis-3a		17
8	1a	PrOH ${ }^{\text {d }}$	14	$4 a^{\text {a }}$		50
9	1a	$(\mathrm{Me})_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{\text {d }}$	14	$4 b^{\text {e }}$	$145 / 0.05 \mathrm{mmHg}{ }^{\text {f }}$	64
10	1 a	BuOH ${ }^{\text {d }}$	14	$4 c^{\text {e }}$	$160 / 0.05 \mathrm{mmHg}{ }^{\text {f }}$	70
11	1b	MeOH	4	$3 b^{\text {e }}$		8
				$3 \mathrm{~d}{ }^{\text {e }}$	131-133	38

${ }^{\text {a }}$ Isolated yields. ${ }^{\text {b }}$ Determined by HPLC. ${ }^{\text {c }}$ This reaction was carried out at $-50^{\circ} \mathrm{C}$. ${ }^{\text {d }}$ These reactions were performed in the presence of sodium carbonate. ${ }^{\mathrm{e}}$ As the mixture of trans and cis isomers. ${ }^{\mathrm{f}}$ Boiling point.
ethanol to give 2,5-bis(alkoxymethyl)tetrahydroseleno-phene-1,1-dibromide (3b) and 3 c in 74 and 48% yields, respectively, the reaction of 1 a with 2 in methanol at $-50^{\circ} \mathrm{C}$ gave 3a instead of 3 b (entry 7). Also, the reaction of 3 a with 2 in methanol at $20^{\circ} \mathrm{C}$ gave 3 b in 72% yield. These results suggest that the alkoxyselenation by cycloaddition proceeded via 3a as an intermediate. Furthermore, the reactions of 1a with 2 in 1-propanol, 2-methyl-1-propanol and 1-butanol at $20^{\circ} \mathrm{C}$ gave 3a in $55-80 \%$ yields instead of the 2,5-bis(alkoxymethyl) derivatives 4a-4c (entries 2-6).

In order to obtain 4a-4c, the reactions of 1 a with 2 in the presence of sodium carbonate were carried out in 1-propanol, 2-methyl-1-propanol and 1-butanol (entries 8-10). These reactions gave 2,5-bis(alkoxy-

methyl)tetrahydroselenophenes $4 \mathbf{a}-\mathbf{4 c}$ in 50,64 and

70\% yields, respectively. As Migalina [5] had already reported on the synthesis of 3a by the reaction of selenium tetrabromide with 2 in diethyl ether, we aitempted the reaction of selenium tetrabromide with 2 in methanol. However, the decomposition of selenium tetrabromide occurred at once and this reaction gave no detectable addition product containing selenium and methoxy group. Consequently, one-pot preparation of 2,5-bis(alkoxymethyl)tetrahydroselenophenes ($\mathbf{3 b}, \mathbf{3 c}$ and $\mathbf{4 a - 4 c}$) could be performed using reagent 1 a and alcohols (methanol, ethanol, 1-propanol, 2-methyl-1propanol and 1-butanol) as solvents.

It is noteworthy that when the reaction of bis(2bromoethyl)selenium dichloride (1b) with 2 was carried out in methanol, cycloaddition gave 2,5 -bis(chloro-methyl)tetrahydroselenophene-1,1-dibromide (3d) and 3b in 38 and 8% yields, respectively. The reaction of 1 b with 2 to give 3b may proceed via 3d as an intermediate. Lindgren has reported [10] that the reaction of bis(2-bromoethyl)selenide with a nucleophile such as selenocyanate anion gives ethene and selenenyl compound. As shown in Scheme 1, these findings suggest that bis(2-bromoethyl)selenide (5), produced by the dechlorination of $\mathbf{1 b}$, gave an episelenonium cation (6).

Scheme 1.

The resulting 6 when added to the carbon-carbon double bond of 2 gave an episelenonium cation (7) as an intermediate together with ethene. Evolution of ethene was thus observed in all reactions.

That the reaction of 1b with 2 gave 3d instead of 2,5-bis(bromomethyl)tetrahydroselenophene-1,1-dichloride may be attributed to the bromide ion being more strongly nucleophilic than the chloride ion [11]. Accordingly, the selenium atom was attacked by the former rather than by the latter.

Migalina [5] revealed that the reaction of selenium tetrabromide with 2 in diethyl ether gave 3a, which with respect to the two bromomethyl groups was a mixture of trans:cis in the ratio $1: 2$. In order to determine the ratio of trans and cis isomers of 3a obtained by our method, fractional recrystallization of 3a from chloroform was carried out. The melting point of the first crystals was $154-155^{\circ} \mathrm{C}$, which value was in agreement with that already reported for trans-3a, and the other crystals showed a melting point at $159-160^{\circ} \mathrm{C}$. Therefore, the later crystals were cis-3a [5]. Also, these isomers were given in 53 and 36% yields, respectively. These results showed that the reaction of 1a with 2 in acetic acid gave a mixture of trans and cis-3a isomers, in the ratio $3: 2$.

In order to investigate the ratios of the trans and cis isomers of $\mathbf{3 b}$ and $\mathbf{3 c}$, the mixtures of isomers were analyzed and identified by HPLC with comparison of the retention times of authentic samples prepared by methoxy or ethoxylation of the corresponding trans and cis isomers of 3a. The ratios of trans and cis isomers were found to be 3:2 for both $\mathbf{3 b}$ and 3 c , and

TABLE 2. Compound trans-3b: fractional atomic coordinates and thermal parameters (\AA^{2}) with estimated standard deviations in parentheses

Atom	x	y	z	$B_{\text {eq }}$
$\mathrm{Br}(1)$	$1.0348(1)$	$0.2069(2)$	$0.2144(1)$	$4.47(6)$
$\mathrm{Se}(1)$	$3 / 4$	$0.1788(2)$	$1 / 4$	$2.33(6)$
$\mathrm{O}(1)$	$0.8263(7)$	$0.220(1)$	$0.5025(6)$	$4.2(4)$
$\mathrm{C}(1)$	$0.765(2)$	$0.312(3)$	$0.585(1)$	$7.0(9)$
$\mathrm{C}(2)$	$0.762(1)$	$0.013(2)$	$0.473(1)$	$3.5(5)$
$\mathrm{C}(3)$	$0.809(1)$	$-0.050(1)$	$0.3651(8)$	$2.6(4)$
$\mathrm{C}(4)$	$0.739(1)$	$-0.256(1)$	$0.3113(9)$	$4.2(5)$
$\mathrm{H}(11)$	$0.80(1)$	$0.42(2)$	$0.60(1)$	8.6
$\mathrm{H}(12)$	$0.68(1)$	$0.34(2)$	$0.57(1)$	8.6
$\mathrm{H}(13)$	$0.79(1)$	$0.26(2)$	$0.658(9)$	8.6
$\mathrm{H}(21)$	$0.646(9)$	$0.03(1)$	$0.473(7)$	4.0
$\mathrm{H}(22)$	$0.790(8)$	$-0.10(1)$	$0.534(7)$	4.0
$\mathrm{H}(31)$	$0.916(8)$	$-0.05(1)$	$0.366(7)$	2.8
$\mathrm{H}(41)$	$0.612(8)$	$-0.25(1)$	$0.316(6)$	4.3
$\mathrm{H}(42)$	$0.77(1)$	$-0.38(1)$	$0.344(8)$	4.3

were in agreement with that of 3a. This result suggested that the alkoxylation proceeded with retention of the configuration via 3a as an intermediate. Therefore, the ratios of trans and cis isomers of $\mathbf{4 a}-\mathbf{4 c}$ might also be $3: 2$, because the reaction of 1 a with 2 in 1-propanol, 2-methyl-1-propanol or 1-butanol afforded trans-3a and cis-3a as the intermediate in the ratio of $3: 2$, respectively.

To investigate the structures of the cycloaddition products ($\mathbf{3 a - 3 c}$ and $\mathbf{4 a - 4 c}$), mass spectra were measured. The parent peaks of $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{3 c}$ appeared at 478,382 and 410 , respectively, at an ionization voltage of 20 eV , although these peaks were not observed at 70 $e V$. The parent peaks of $4 a, 4 b$ and $4 c$ also appeared at 280, 308 and 308, respectively, under the same conditions. Furthermore, the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of trans and cis isomers of the cycloaddition products 3a, 3b and 3c were measured in CDCl_{3}. The chemical shifts due to the two methine protons in trans-3a appeared at $\delta=4.65-5.04$ as a complex multiplet. Similarly, the methine proton signals in cis-3a appeared at $\delta=4.97-5.02$ as a multiplet. Although these chemical shifts and the pattern of splitting between trans and cis isomers of 3a showed no significant difference, the absorption ranges of the multiplets were 0.39 ppm in trans-3a and 0.05 ppm in cis-3a.

Similar trends were also shown in the absorption ranges of the multiplets of trans and cis isomers in 3b and 3c. The X-ray analysis of trans-3b reported below describes how the structure of the five-membered ring in trans-3b forms a distorted plane, and the torsion angles between the methine protons and methylene protons of axial position in the ring are almost 180°. On the other hand, the structure of the five-membered ring in cis-3b might not involve a distorted plane in which case the angles between these protons would probably be less than 180°. On account of the angles between these protons in trans- $\mathbf{3 b}$ being larger than those in cis-3b, the coupling constants of the methine protons and methylene protons in the axial position in trans- $\mathbf{3 b}$ were large compared with cis- $\mathbf{3 b}$. Therefore, the absorption range of the multiplet of the methine protons in trans-3b would be expected to be larger than that of cis-3b. Presumably, a similar explanation would apply to the absorption ranges in trans and cis isomers of $\mathbf{3 a}, \mathbf{3 c}, 4 \mathrm{a}, \mathbf{4 b}$ and 4 c .

In order to investigate the structure in more detail, X-ray analysis of trans-3b was carried out. The final parameters are given in Table 2. The bond lengths, bond angles and torsion angles are also listed in Table 3. The perspective views of trans-3b with an atomic numbering scheme are illustrated in Fig. 1. The two methoxymethyl groups assume the same conformation and trans geometry. Therefore, the structure has a C_{2}

Fig. 1. The perspective views of compound trans-3b with the atomic numbering scheme; top view (a) and side view (b).
axis passing through the selenium atom from the centre of the dimethylene bridge ($\mathrm{C}(4)-\mathrm{C}(4)$) in the ring moiety. The torsion angle between $\mathrm{Se}(1)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{O}(1)$ is $-53.3(9)^{\circ}$. As described above, the conformation of the five-membered ring involved a distorted plane, and the torsion angle (C(3)-C(4)-C(4)$\mathrm{C}(3))$ was $-55(2)^{\circ}$. Therefore, as shown in top view (a) of Fig. 1, the torsion angle of $\mathrm{H}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(41)$ was almost 180°. The bond angle, $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}$ is
$172.16(9)^{\circ}$, i.e. almost 180°. This is in agreement with the reported values for the $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}$ bond angle (175.0(6) ${ }^{\circ}$) in bis(2-bromoethyl)selenium dibromide (1a) [9] and $175.1(1)^{\circ}$ in 1 -thia-4-selenocyclohexane-4,4-dibromide [12]. Therefore, the selenium atom exists in a slightly distorted trigonal bipyramidal geometry with the two axially coordinated bromine atoms.

3. Experimental section

Melting points were recorded with a Yazawa apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were determined with a JEOL GX 400 spectrometer and a Hitachi R-1100 in CDCl_{3} with tetramethylsilane as the internal standard. High-performance liquid chromatography (HPLC) was carried out using a JASCO HPLC system with a Sil, C18-5 column monitored by UV absorption measurements. Mass spectra were obtained with a Hitachi M 80 mass spectrometer. Elemental analyses were obtained with a Perkin Elmer 2400 instrument. Distillation was carried out using a Sibata glass tube oven apparatus, GTO-350RD.

3.1. Materials

Bis(2-bromoethyl)selenium dibromide 1a [13], bis(2bromoethyl)selenium dichloride 1b [14] and selenium tetrabromide [12] were prepared according to the methods described in the literature. All solvents were purified by distillation in the usual manner.

3.2. The reaction of $1 a$ with 2 in acetic acid

A suspension of $1 \mathrm{a}(4.5 \mathrm{~g}, 10 \mathrm{mmol})$ and $2(0.82 \mathrm{~g}, 10$ $\mathrm{mmol})$ in acetic acid $\left(20 \mathrm{~cm}^{3}\right)$ was stirred at $20^{\circ} \mathrm{C}$ for 4 h. The resulting orange yellow solids were separated and then purified by gel permeation chromatography

TABLE 3. Compound trans-3b: bond lengths ((\AA), and bond and torsion angles $\left({ }^{\circ}\right)$

1	2	3	4	1-2	1-2-3	1-2-3-4
$\mathrm{Br}(1)$	Se(1)	$\mathrm{Br}(1)$		2.555(1)	172.16(9)	
$\mathrm{Br}(1)$	Se(1)	C(3)	C(2)		91.2(3)	123.8(7)
$\mathrm{Br}(1)$	Se(1)	C(3)	C(4)		91.2(3)	-108.5(7)
$\mathrm{Br}(1)$	Se(1)	C(3)	C(2)		94.4(3)	-50.77)
$\mathrm{Br}(1)$	$\mathrm{Se}(1)$	C(3)	C(4)		94.4(3)	77.0(7)
$\mathrm{Se}(1)$	C(3)	C(2)	O(1)	2.004(9)	$110.8(7)$	-53.3(9)
$\mathrm{Se}(1)$	C(3)	C(4)	C(4)		104.9(6)	40(1)
$\mathrm{Se}(1)$	C(3)	C(2)	O(1)	2.004(9)		-53.3(9)
$\mathrm{Se}(1)$	C(3)	C(4)	O(4)			40(1)
O(1)	C(2)	C(3)	C(4)	1.43(1)	108.4(9)	- 173.7(7)
C(1)	O(1)	C(2)	C(3)	1.33(2)	113 (1)	166(1)
C(2)	C(3)	$\mathrm{Se}(1)$	C(3)	1.48(1)		-141.9(9)
C(2)	C(3)	C(4)	C(4)		117.5(9)	163(1)
C(3)	$\mathrm{Se}(1)$	C(3)	C(4)		89.66)	-14.1(6)
C(3)	C(4)	C(4)	O(3)	1.52(1)	108.5(8)	-55(2)
C(4)	C(4)	C(3)	$\mathrm{Se}(1)$	1.53(2)		

(Sephadex LH-20) using THF as an eluent. The main fraction was collected and then the solution was concentrated under reduced pressure to give 3 a as a mixture of trans and cis isomers in 89% yield. Furthermore, the fractional recrystallization of the mixture from chloroform gave trans-3a and cis-3a in 53 and 36% yields, respectively. trans-3a: M.p. $154-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=2.52-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.94$ (m, 2 H), 3.99-4.03 (m, 2H), 4.22-4.28 (m, 2H) and 4.655.04 (m, 2H). Found: C, 15.10; H, 2.05. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{4} \mathrm{Se}$ calcd.: C, $15.00 ; \mathrm{H}, 2.10 \%$. Mass (20 eV): $m / z 478$ (M^{+}). cis-3a: M.p. $159-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=2.52-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.12$ $(\mathrm{m}, 2 \mathrm{H}), 4.22-4.30(\mathrm{~m}, 2 \mathrm{H})$ and $4.97-5.02(\mathrm{~m}, 2 \mathrm{H})$. Found: C, 15.04; H, 1.96. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{4} \mathrm{Se}$; C, $15.00 ; \mathrm{H}, 2.10 \%$. Mass (20 eV): $m / z 478\left(\mathrm{M}^{+}\right)$.

3.3. The preparation of cis-3b from cis-3a in methanol

After a suspension of cis-3a ($0.956 \mathrm{~g}, 2 \mathrm{mmol}$) and sodium carbonate ($0.212 \mathrm{~g}, 2 \mathrm{mmol}$) in methanol (5 cm^{3}) was stirred at $0^{\circ} \mathrm{C}$ for 2 h , the resulting solution was concentrated under reduced pressure. The residue was extracted with chloroform ($10 \mathrm{~cm}^{3}$), and then the chloroform solution was concentrated under reduced pressure. The residue was redissolved in tetrachloromethane ($20 \mathrm{~cm}^{3}$). Bromine ($0.32 \mathrm{~g}, 4 \mathrm{mmol}$) was added to the solution at $0^{\circ} \mathrm{C}$, and then the solution was stirred for 30 min . The solution was concentrated under reduced pressure. The resulting orange crystals were collected by filtration and washed with small amounts of hexane. The crystals were recrystallized from benzene to give cis-3b in 30% yield. M.p. $140-$ $141^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=2.32-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.58-2.66 (m, 2H), $3.44(\mathrm{~s}, 6 \mathrm{H}), 3.91-3.95(\mathrm{~m}, 2 \mathrm{H})$, 4.27-4.33 (m, 2H) and 4.72-4.80 (m, 2H). Found: C, 25.16; $\mathrm{H}, 4.06$. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Se}: \mathrm{C}, 25.07$; H , 4.22%. Mass (20 eV): $m / z 382\left(\mathrm{M}^{+}\right)$.

3.4. Cis-3a, trans-3b and trans-3c

These were prepared using the same method as described above.

Cis-3c. Yield 22%. M.p. $120-121^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 2 \mathrm{H})$, $2.58-2.64(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.96-4.00(\mathrm{~m}$, $2 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 2 \mathrm{H})$ and $4.73-4.80(\mathrm{~m}, 2 \mathrm{H})$. Found: C, 29.28; H, 4.79. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Se}$; C, 29.22; H. 4.91%. Mass (20 eV): $410\left(\mathrm{M}^{+}\right)$.

Trans-3b. Yield 86%. M.p. $138-139^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=2.30-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.63(\mathrm{~m}, 2 \mathrm{H})$, $3.45(\mathrm{~s}, 6 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.34(\mathrm{~m}, 2 \mathrm{H})$ and 4.70-4.81 (m, 2H). Found: C, 25.29; H, 4.31. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Sc}: \mathrm{C}, 25.07 ; \mathrm{H}, 4.22 \%$. Mass (20 eV): 382 $\left(\mathrm{M}^{+}\right)$.

Trans-3c. Yield 56%. M.p. $114-115^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=1.25$ (t, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), $2.25-2.40$ (m, 2 H), 2.55-3.10 (m, 2H), 3.32-3.75 (m, 4H), 3.96-4.05 $(\mathrm{m}, 2 \mathrm{H}), 4.27-4.35(\mathrm{~m}, 2 \mathrm{H})$ and $4.70-4.85(\mathrm{~m}, 2 \mathrm{H})$. Found: C, 29.12; H, 4.69. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Se}$: C, 29.22; H, 4.91%. Mass (20 eV): $410\left(\mathrm{M}^{+}\right)$.

3.5. The reaction of $1 \mathbf{1 a}$ with 2 in methanol

A suspension of $1 \mathrm{a}(4.5 \mathrm{~g}, 10 \mathrm{mmol})$ and $2(1.8 \mathrm{~g}, 10$ $\mathrm{mmol})$ in methanol ($20 \mathrm{~cm}^{3}$) was stirred at $20^{\circ} \mathrm{C}$ for 8 h . The resulting orange solids were collected by filtration and washed with small amounts of methanol. The solids were recrystallized from benzene to give 3b as a mixture of trans and cis isomers in 73% yield, whose ratio was determined by comparison with authentic samples in HPLC analysis. HPLC was carried out using methanol $:$ water $=3: 1$ as an eluent, and the flow rate was $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The retention times of trans- 3 b and cis-3b were 3.89 and 6.63 min , respectively. The ratio of trans-3b and cis-3b was found to be 3:2.

3.6. The reaction of $\mathbf{1 a}$ with $\mathbf{2}$ in ethanol

A suspension of $1 \mathrm{a}(4.5 \mathrm{~g}, 10 \mathrm{mmol})$ and $2(1.8 \mathrm{~g}, 10$ mmol) in ethanol ($20 \mathrm{~cm}^{3}$) was stirred at $20^{\circ} \mathrm{C}$ for 8 h . The resulting orange solids were collected by filtration and washed with small amounts of ethanol. The solids were recrystallized from benzene and hexane ($2: 1$) to give 3 c as a mixture of trans and cis isomers in 48% yield. The ratio of trans and cis isomers was determined as trans: cis $=3: 2$ by the same method as described above. The retention times of trans-3c and cis-3c were 4.68 and 6.71 min , respectively.

3.7. The reaction of 1 a with 2 in 1-propanol

A suspension of 1a and 2 in 1-propanol was stirred at $20^{\circ} \mathrm{C}$ for 14 h . The resulting solids were collected by filtration and washed with small amounts of 1-propanol. The solids were purified by gel permeation chromatography using THF as an eluent. The main fraction was concentrated under reduced pressure to give a mixture of trans-3a and cis-3a in 80% yield. The fractional recrystallization of a mixture from chloroform gave trans-3a and cis-3a in 48 and 32% yields, respectively.
3.8. The reaction of 1 a with 2 in 1-propanol in the presence of sodium carbonate

A suspension of $1 \mathrm{a}(5.4 \mathrm{~g}, 12 \mathrm{mmol}), 2(1.0 \mathrm{~g}, 12$ mmol) and sodium carbonate ($0.63 \mathrm{~g}, 6 \mathrm{mmol}$) in 1-propanol ($30 \mathrm{~cm}^{3}$) was stirred at $20^{\circ} \mathrm{C}$ for 14 h . The resulting colourless solution was concentrated under reduced pressure. The residue was extracted with chloroform, and the solution concentrated again. The residue was chromatographed on alumina using chloro-
form as an eluent. The main fraction was concentrated, and the residue distilled under reduced pressure in a glass tube oven to give 2,5-bis(propoxymethyl)tetrahydroselenophene (4a) as a mixture of trans and cis isomers. Yield 50%. B.p. $130^{\circ} \mathrm{C} / 0.05 \mathrm{mmHg}$. ${ }^{1} \mathrm{H}$ NMR (60 MHz): $\delta=0.98$ (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$), 1.57 (six, $J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}$), $1.92-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.60-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 2 \mathrm{H})$ and $3.65-3.92(\mathrm{~m}$, $2 H$). Found: C, 51.37; H, 8.91. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Se}$: C, $51.60 ; \mathrm{H}, 8.68 \%$. Mass (20 eV): $280\left(\mathrm{M}^{+}\right.$).

3.9. 2,5-bis(2-methyl-1-propoxymethyl)tetrahydroseleno-

 phene (4b) and 2,5-bis(butoxymethyl)ttrahydroselenophene (4c)Compounds 4 b and 4 c were prepared by the same method as above.

4b. Yield 64%. B.p. $145^{\circ} \mathrm{C} / 0.05 \mathrm{mmHg}$. ${ }^{1} \mathrm{H}$ NMR (60 MHz): $\delta=0.98$ (d, $J=7.6 \mathrm{~Hz}, 12 \mathrm{H}$), $1.60-2.28$ (m, 2 H), $2.56-3.05(\mathrm{~m}, 4 \mathrm{H}), 3.12-3.70(\mathrm{~m}, 8 \mathrm{H})$ and $3.65-$ 3.95 (m, 2H). Found: C, 54.59 ; H, 9.39. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Se}: \mathrm{C}, 54.70 ; \mathrm{H}, 9.20 \%$. Mass (20 eV): 308 $\left(\mathrm{M}^{+}\right)$.

4c. Yield 70%. B.p. $160^{\circ} \mathrm{C} / 0.05 \mathrm{mmHg} .{ }^{1} \mathrm{H}$ NMR (60 MHz): $\delta=0.72-1.20(\mathrm{~m}, 6 \mathrm{H}$), $1.20-1.85(\mathrm{~m}, 8 \mathrm{H})$, 2.50-2.95 (m, 4H), 3.25-3.60 (m, 8H), 3.60-3.75 (m, 2 H). Found: C, $54.50 ; \mathrm{H}, 9.32$. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Se}$: C, $54.70 ; \mathrm{H}, 9.20 \%$. Mass (20 eV): $308\left(\mathrm{M}^{+}\right.$).

3.10. The reaction of $1 b$ with 2 in methanol

A suspension of $\mathbf{1 b}(1.83 \mathrm{~g}, 5 \mathrm{mmol})$ and $2(0.41 \mathrm{~g}, 5$ mmol) in methanol was stirred at $20^{\circ} \mathrm{C}$ for 4 h . The precipitates were collected by filtration and washed with small amounts of methanol. The solids were recrystallized from benzene to give 3b and 2,5-bis(chloro-methyl)tetrahydroselenophene-1,1-dibromide (3d) in 8 and 38% yields, respectively. 3d. Yield $38 \% .{ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}): \delta=2.20-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.60-3.10(\mathrm{~m}, 2 \mathrm{H})$, 3.80-4.39 (m, 2H), 4.45-4.65 (m, 2H) and 4.65-5.40 (m, 2H). Found: C, 18.62; H, 2.45. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{Se}$: C, 18.39; H, 2.58%. Mass (20 eV): 391 $\left(\mathrm{M}^{+}\right)$. Furthermore, the reaction of $3 \mathrm{~d}(0.782 \mathrm{~g}, 2$ mmol) with sodium carbonate ($0.212 \mathrm{~g}, 2 \mathrm{mmol}$) in methanol ($5 \mathrm{~cm}^{3}$) gave trans-3b and cis-3b in 23 and 18% yields, respectively.

3.11. X-Ray crystallography of trans-3a

A yellow prismatic crystal of $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Se}$ having approximate dimensions of $0.500 \times 0.320 \times 0.320 \mathrm{~mm}$ was mounted in a glass capillary. All measurements were made on a Rigaku AFC5S diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation and a 12 KW rotating anode generator. Crystal data: F.W. $=$ 382.98 , monoclinic, space group $P 2 / n, a=8.592$ (2) \AA, $b=6.218(3) \AA, c=12.146(3) \AA, \quad \beta=98.74(2)^{\circ}, \quad V=$ 641.4(4) $\AA^{3}, Z=2, D_{\mathrm{c}}=1.983 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo K $\alpha)=$ $90.42 \mathrm{~cm}^{-1}$. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were located by difference Fourier synthesis. The absorption correction was performed by ψ-scan method. All calculations were performed using the texsan [15] crystallographic software package from the Molecular Structure Corporation.

References

1 C. Paulmier, in J. E. Baldwin (ed.), Selenium Reagents and Intermediates in Organic Synthesis, Pergamon Press, New York, 1986.
2 D. L. J. Clive, Tetrahedron, 34 (1987) 1049.
3 K. C. Nicolaou, Tetrahedron, 37 (1981) 4097.
4 K. C. Nicolaou, D. A. Claremon, W. E. Barnette and S. P. Seitz, J. Am. Chem. Soc., 101 (1979) 3704.

5 V. Y. Migalina, V. I. Staninets, V. G. Lendel, I. M. Balog, V. A. Palyulin, A. S. Koz'min and N. S. Zefirov, Khim. Geterosikl. Soldin., 1 (1977) 49.
6 S. Akabori, Y. Takanohashi and S. Takagi, Synth. Commun., 20 (1990) 3187.

7 S. Akabori and Y. Takanoshi, Chem. Lett., (1990) 251.
8 S. Akabori and Y. Takanohashi, J. Chem. Soc., Perkin Trans., I (1991) 749.

9 S. Akabori, Y. Takanohashi and S. Aoki, J. Chem. Soc., Perkin Trans. I (1991) 3121.
10 B. Lindgren, Acta Chem. Scand., B (30) (1976) 941.
11 R.G. Pearson and J. Songstad, J. Am. Chem. Soc., 89 (1967) 1827.
12 L. Battelle, C. Knobler and J. D. McCullough, Inorg. Chem., 6 (1967) 958.

13 H. C. Bell and C. S. Gibson, J. Chem. Soc., (1925) 1887.
14 H. Funk and W. Papenroth, J. Prakt. Chem., 8 (1959) 256.
15 texsan-texray Structure Analysis Package, Molecular Structure Corporation, 1985.

[^0]: Correspondence to: Dr. S. Akabori.

